Pages

TV ONLINE

CARA PASANG TV

16 Februari, 2011

Konsep Sambungan Struktur Baja

6.3.1. Sistem Struktur dengan Konstruksi Baja
Hampir semua sistem konstruksi baja berat terbuat dari elemenelemen linear yang membentang satu arah. Berbagai penampang baja profil dengan flens lebar yang tersedia dalam berbagai ukuran dapat digunakan. Banyaknya ukuran penampang ini memungkinkan fleksibilitas dalam desain elemen balok-dan-kolom. Meskipun hubungan sederhana (sendi) umumnya digunakan pada sistem ini, kita dapat dengan mudah membuat titik hubung  yang mampu memikul momen. Struktur rangka yang titik-titik hubungnya mampu memikul momen, mempunyai tahanan terhadap beban lateral cukup besar. Kestabilan lateral juga dapat ditingkatkan dengan menggunakan dinding geser atau elemen pengekang diagonal.

BALOK
Bentuk sayap lebar biasanya digunakan sebagai elemen yang membentang secara horizontal [lihat Gambar 6.7(a)]. Interval bentang yang mungkin untuk elemen ini sangat lebar. Elemen ini biasanya ditumpu sederhana kecuali apabila aksi rangka diperlukan untuk menjamin stabilitas, di mana hubungan yang mampu memikul momen digunakan. Bentuk-bentuk lain, seperti kanal, kadang-kadang digunakan untuk memikul momen, tetapi biasanya terbatas pada beban ringan dan bentang pendek.

GIRDER PLAT
Girder plat adalah bentuk khusus dari balok dengan penampang tersusun [Iihat Gambar 6.7(d)], Elemen ini dapat dirancang untuk berbagai macam beban maupun bentang yang dibutuhkan. Elemen struktur ini sangat berguna apabila beban yang sangat besar harus dipikul oleh bentang menengah. Elemen ini sering digunakan, misalnya sebagai elemen penyalur beban utama yang memikul beban kolom pada bentang bersih.
KONSTRUKSI KOMPOSIT
Banyak sistem struktural yang tidak dapat dikelompokkan secara mudah menurut material yang digunakan. Sistem balok komposit seperti terlihat pada Gambar 6.7(c) sering kita jumpai. Dalam hal ini, baja adalah bagian yang diletakkan pertama kali, kemudian beton dicor di sekitar penghubung geser (shear connectors) di atas balok baja. Adanya penghubung geser tersebut menyebabkan balok baja dan beton di atasnya bekerja secara integral. Dengan demikian terbentuk penampang T dengan baja sebagai bagian yang mengalami tarik, dan beton yang mengalami tekan.
RANGKA BATANG DAN JOIST BATANG TERBUKA
Merupakan variasi tak hingga dari konfigurasi rangka batang yang mungkin digunakan. Rangka batang dapat juga dibuat atau dirancang secara khusus untuk bentang dan beban yang sangat besar. Joist web terbuka yang merupakan produksi besar-besaran [lihat Gambar 6.7(b)], dapat digunakan baik untuk sistem lantai maupun atap. Elemen ini umumnya relatif ringan dan terdistribusi merata. Joist web terbuka umumnya ditumpu sederhana, tetapi bila diperlukan dapat dibuat hubungan kaku. Pada sistem yang sama dapat digunakan joist web terbuka dan flens lebar yang mempunyai titik hubung yang dapat memikul momen sehingga kita mendapat aksi rangka yang dapat menahan beban lateral.
PELENGKUNG
Pelengkung kaku dengan berbagai bentuk dapat dibuat dari baja. Pelengkung yang telah dibuat di luar lokasi (prefabricated) dan telah tersedia untuk bentang kecil sampai menengah. Telah ada pelengkung yang dirancang secara khusus dan mempunyai bentang sangat panjang [misalnya bentang 300 ft (90 m) atau lebih]. Pelengkung baja dapat dibuat dari penampang masif atau dinding terbuka.
CANGKANG
Banyak bentuk cangkang yang menggunakan baja. Masalah utama dalam penggunaan baja untuk memperoleh permukaan berkelengkungan ganda adalah memuat bentuk dari elemen-elemen garis. Pada kubah, misalnya, baik pendekatan dengan rusuk atau geodesik adalah mungkin. Dek baja ringan yang berdimensi kecil umumnya digunakan untuk membentuk permukaan terluarnya. Pada situasi bentang kecil, permukaan baja melengkung dapat dibuat dengan menekan lembaran baja secara khusus agar serupa dengan cara yang digunakan dalam membuat bentuk baja berkelengkungan tunggal maupun ganda pada badan mobil.
STRUKTUR KABEL
Baja adalah satu-satunya material yang dapat digunakan sebagai struktur kabel. Bentuk struktur kabel yang dapat dibuat tak hinggabanyaknya. Kabel dapat digunakan untuk atap permanen yang permukaan penutupnya dapat berupa elemen rangka datar kaku atau permukaan membran.
UKURAN ELEMEN
Gambar 6.8 mengilustrasikan batas-batas perbandingan tinggi bentang untuk beberapa sistem struktur baja yang umum digunakan. Kolom baja struktural umumnya mempunyai perbandingan tebal-tinggi bervariasi antara 1 : 24 dan 1 : 9, yang tergantung pada beban dan tinggi kolom. Keseluruhan kemungkinan bentang yang dapat dicapai dari beberapa sistem terangkum dalam gambar 6.9.
Setiap struktur adalah gabungan dari bagian-bagian tersendiri atau batang-batang yang harus disambung bersama (biasanya di ujung batang) dengan beberapa cara. Sambungan terdiri dari komponen sambungan (pelat pengisi, pelat buhul, pelat pendukung, dan pelat penyambung) dan alat pengencang (baut dan las).
6.3.2. Jenis Alat Sambung Bukan Las
Jenis-jenis sambungan struktur baja yang digunakan adalah pengelasan serta sambungan yang menggunakan alat penyambung berupa paku keling (rivet) dan baut. Baut kekuatan tinggi (high strength bolt) telah banyak menggantikan paku keling sebagai alat utama dalam sambungan struktural yang tidak dilas.
a) Baut kekuatan tinggi
Dua jenis utama baut kekuatan (mutu) tinggi ditunjukkan oleh ASTM sebagai A325 dan A490. Baut ini memiliki kepala segienam yang tebal dan digunakan dengan mur segienam yang setengah halus (semifinished) dan tebal seperti yang ditunjukkan pada Gambar 6.10(b). Bagian berulirnya lebih pendek dari pada baut non-struktural, dan dapat dipotong atau digiling (rolled).
Baut A325 terbuat dari baja karbon sedang yang diberi perlakuan panas dengan kekuatan leleh sekitar 81 sampai 92 ksi (558 sampai 634 MPa) yang tergantung pada diameter. Baut A490 juga diberi perlakuan panas tetapi terbuat dari baja paduan (alloy) dengan kekuatan leleh sekitar 115 sampai 130 ksi (793 sampai 896 MPa) yang tergantung pada diameter. Baut A449 kadang-kadang digunakan bila diameter yang diperlukan berkisar dari II sampai 3 inci, dan juga untuk baut angkur serta batang bulat berulir. Diameter baut kekuatan tinggi berkisar antara ½ dan 1 ½ inci (3 inci untuk A449). Diameter yang paling sering digunakan pada konstruksi gedung adalah 3/4 inci dan 7/8 inci, sedang ukuran yang paling umum dalam perencanaan jembatan adalah 7/8 inci dan 1 inci.
Baut kekuatan tinggi dikencangkan (tightened) untuk menimbulkan tegangan tarik yang ditetapkan pada baut sehingga terjadi gaya jepit (klem/clamping force) pada sambungan. Oleh karena itu, pemindahan beban kerja yang sesungguhnya pada sambungan terjadi akibat adanya gesekan (friksi) pada potongan yang disambung. Sambungan dengan baut kekuatan tinggi dapat direncanakan sebagai tipe geser (friction type), bila daya tahan gelincir (slip) yang tinggi dikehendaki; atau sebagai tipe tumpu (bearing type), bila daya tahan gelincir yang tinggi tidak dibutuhkan.
b) Paku keling
Sudah sejak lama paku keling diterima sebagai alat penyambung batang, tetapi beberapa tahun terakhir ini sudah jarang digunakan di Amerika. Paku keling dibuat dari baja batangan dan memiliki bentuk silinder dengan kepala di salah satu ujungnya. Baja paku keling adalah baja karbon sedang dengan identifikasi ASTM A502 Mutu I (Fv = 28 ksi) (1190 MPa) dan Mutu 2 (Fy = 38 ksi) (260 MPa), serta kekuatan leleh minimum yang ditetapkan didasarkan pada bahan baja batangan. Pembuatan dan pemasangan paku keling menimbulkan perubahan sifat mekanis. Proses pemasangannya adalah pertama paku keling dipanasi hingga warnanya menjadi merah muda kemudian paku keling dimasukkan ke dalam lubang, dan kepalanya ditekan sambil mendesak ujung lainnya sehingga terbentuk kepala lain yang bulat. Selama proses ini, tangkai (shank) paku keling mengisi lubang (tempat paku dimasukkan) secara penuh atau hampir penuh, sehingga menghasilkan gaya jepit (klem). Namun, besarnya jepitan akibat pendinginan paku keling bervariasi dari satu paku keling ke lainnya, sehingga tidak dapat diperhitungkan dalam perencanaan. Paku keling juga dapat dipasang pada keadaan dingin tetapi akibatnya gaya jepit tidak terjadi karena paku tidak menyusut setelah dipasang.
c) Baut Hitam
Baut ini dibuat dari baja karbon rendah yang diidentifikasi sebagai ASTM A307, dan merupakan jenis baut yang paling murah. Namun, baut ini belum tentu menghasilkan sambungan yang paling murah karena banyaknya jumlah baut yang dibutuhkan pada suatu sambungan. Pemakaiannya terutama pada struktur yang ringan, batang sekunder atau pengaku, anjungan (platform), gording, rusuk dinding, rangka batang yang kecil dan lain-lain yang bebannya kecil dan bersifat statis. Baut ini juga dipakai sebagai alat penyambung sementara pada sambungan yang menggunakan baut kekuatan tinggi, paku keling, atau las. Baut hitam (yang tidak dihaluskan) kadangkadang disebut baut biasa, mesin, atau kasar, serta kepala dan murnya dapat berbentuk bujur sangkar.
d) Baut Sekrup (Turned Bolt)
Baut yang secara praktis sudah ditinggalkan ini dibuat dengan mesin dari bahan berbentuk segienam dengan toleransi yang lebih kecil (sekitar 5’0 inci.) bila dibandingkan baut hitam. Jenis baut ini terutama digunakan bila sambungan memerlukan baut yang pas dengan lubang yang dibor, seperti pada bagian konstruksi paku keling yang terletak sedemikian rupa hingga penembakan paku keling yang baik sulit dilakukan. Kadang-kadang baut ini bermanfaat dalam mensejajarkan peralatan mesin dan batang struktural yang posisinya harus akurat. Saat itu baut sekrup jarang sekali digunakan pada sambungan struktural, karena baut kekuatan tinggi lebih baik dan lebih murah.
e) Baut Bersirip (Ribbed Bolt)
Baut ini terbuat dari baja paku keling biasa, dan berkepala bundar dengan tonjolan sirip-sirip yang sejajar tangkainya. Baut bersirip telah lama dipakai sebagai alternatif dari paku keling. Diameter yang sesungguhnya pada baut bersirip dengan ukuran tertentu sedikit lebih besar dari lubang tempat baut tersebut. Dalam pemasangan baut bersirip, baut memotong tepi keliling lubang sehingga diperoleh cengkraman yang relatif erat. Jenis baut ini terutama bermanfaat pada sambungan tumpu (bearing) dan pada sambungan yang mengalami tegangan berganti (bolak-balik). Variasi dari baut bersirip adalah baut dengan tangkai bergerigi (interference-body bolt.) yang terbuat dari baja baut A325. Sebagai pengganti sirip longitudinal, baut ini memiliki gerigi keliling dan sirip sejajar tangkainya. Karena gerigi sekeliling tangkai memotong sirip sejajar, baut ini kadang-kadang disebut baut bersirip terputus (interrupted-rib). Baut bersirip sukar dipasang pada sambungan yang terdiri dari beberapa lapis pelat. Baut kekuatan tinggi A325 dengan tangkai bergerigi yang sekarang juga sukar dimasukkan ke lubang yang melalui sejumlah plat; namun, baut ini digunakan bila hendak memperoleh baut yang harus mencengkram erat pada lubangnya. Selain itu, pada saat pengencangan mur, kepala baut tidak perlu dipegang seperti yang umumnya dilakukan pada baut A325 biasa yang polos.
6.3.3. Sistem Sambungan Baut
Jenis baut yang dapat digunakan untuk struktur bangunan sesuai SNI 03 – 1729 – 2002 TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG adalah baut yang jenisnya ditentukan dalam SII (0589-81, 0647-91 dan 0780-83, SII 0781-83) atau SNI (0541-89-A, 0571-89-A, dan 0661-89-A) yang sesuai, atau penggantinya. Baut yang digunakan pada sambungan struktural, baik baut A325 maupun baut A490 merupakan baut berkepala segi enam yang tebal.
Keduanya memiliki mur segi enam tebal yang diberi tanda standar dansimbol pabrik pada salah satu mukanya. Bagian berulir baut dengan kepala segienam lebih pendek dari pada baut standar yang lain; keadaan ini memperkecil kemungkinan adanya ulir pada tangkai baut yang memerlukan kekuatan maksimum.
a) Beban leleh dan penarikan baut
Syarat utama dalam pemasangan baut kekuatan tinggi ialah memberikan gaya pratarik (pretension) yang memadai. Gaya pratarik harus sebesar mungkin dan tidak menimbulkan deformasi permanen atau kehancuran baut. Bahan baut menunjukkan kelakuan tegangan-regangan (beban-deformasi) yang tidak memiliki titik leleh yang jelas. Sebagai pengganti tegangan leleh, istilah beban leleh (beban tarik awal/proof load) akan digunakan untuk baut. Beban leleh adalah beban yang diperoleh dari perkalian luas tegangan tarik dan tegangan leleh yang ditentukan berdasarkan regangan tetap (offset strain) 0,2% atau perpanjangan 0,5% akibat beban. Tegangan beban leleh untuk baut A325 dan A490 masingmasing minimal sekitar 70% dan 80% dari kekuatan tarik maksimumnya.
b) Teknik pemasangan
Tiga teknik yang umum untuk memperoleh pratarik yang dibutuhkan adalah metode kunci yang dikalibrasi (calibrated wrench), metode putaran mur (turn-of the nut), dan metode indikator tarikan langsung (direct tension indicator). Metode kunci yang dikalibrasi dapat dilakukan dengan kunci puntir manual (kunci Inggris) atau kunci otomatis yang diatur agar berhenti pada
harga puntir yang ditetapkan. Secara umum, masing-masing proses pemasangan memerlukan minimum 2 1/4 putaran dari titik erat untuk mematahkan baut. Bila metoda putaran mur digunakan dan baut ditarik secara bertahap dengan kelipatan 1/8 putaran, baut biasanya akan patah setelah empat putaran dari titik erat. Metode putaran mur merupakan metode yang termurah, lebih handal, dan umumnya lebih disukai.
Metode ketiga yang paling baru untuk menarik baut adalah metode indikator tarikan langsung. Alat yang dipakai adalah cincin pengencang dengan sejumlah tonjolan pada salah satu mukanya. Cincin dimasukkan di antara kepala baut dan bahan yang digenggam, dengan bagian tonjolan menumpu pada sisi bawah kepala baut sehingga terdapat celah akibat tonjolan tersebut. Pada saat baut dikencangkan, tonjolan-tonjolan tertekan dan memendek sehingga celahnya mengecil. Tarikan baut ditentukan dengan mengukur lebar celah yang ada.
c) Perancangan sambungan baut
Sambungan-sambungan yang dibuat dengan baut tegangan tinggi digolongkan menjadi:
? Jenis sambungan gesekan
? Jenis sambungan penahan beban dengan uliran baut termasuk dalam bidang geseran [Gambar 6.11(a)]
? Jenis sambungan penahan beban dengan uliran baut tidak termasuk dalam bidang geseran [Gambar 6.11(b)]
Sambungan-sambungan baut (tipe N atau X) atau paku keling bisa mengalami keruntuhan dalam empat cara yang berbeda.
? Pertama, batang-batang yang disambung akan merigalaini keruntuhan melalui satu atau lebih lubang-lubang alat penyambungan akibat bekerjanya gaya tarik (Iihat Gambar 6.12a).
? Kedua, apabila lubang-lubang dibor terlalu dekat pada tepi batang tarik, maka baja di belakang alat-alat penyaTnbung akan meleteh akibat geseran (Iihat Gambar 6.12b).
? Ketiga, alat penyambungnya sendiri mengalami keruntuhan akibat bekerjanya geseran (Gambar 6.12.c).
? Keempat, satu-satu atau lebih batang tarik mengalami keruntuhan karena tidak dapat menahan gaya-gaya yang disalurkan oleh alatalat penyambung (Gambar 6.12d). Untuk mencegah terjadinya keruntuhan maka baik sambungan maupun batang-batang yang disambung harus direncanakan supaya dapat mengatasi keempat jenis keruntuhan yang dikemukakan di atas.
? Pertama, untuk menjamin tidak terjadinya keruntuhan pada bagianbagian yang disambung, bagian-bagian tersebut harus direncanakan sedemikian rupa, sehingga tegangan tarik yang bekerja pada penampang bruto lebih kecil dari 0,6 Fy, dan yang bekerja pada penampang etektif netto lebih kecil dari 0,5 Fy.
? Kedua, untuk mencegah robeknya baja yang terletak di belakang alat penyambung, maka jarak minimum dari pusat lubang alat penyambung ke tepi batang dalam arah yang sarna dengan arah gaya tidak boleh kurang dari 2 P/ Fu t . Di sini P adalah gaya yang ditahan oleh alat penyambung, dan t adalah tebal kritis dari bagian yang disambung.
? Ketiga, untuk menjamin supaya alat penyambung tidak runtuh akibat geseran, maka jumlah alat penyambung harus ditentukan sesuai dengan peraturan, supaya dapat membatasi tegangan geser maksimum yang terjadi pada bagian alat penyambung yang kritis.
? Keempat, untuk mencegah terjadinya kehancuran pada bagian yang disambung akibat penyaluran gaya dari alat penyambung ke batang maka harus ditentukan jumlah minimum alat penyarnbung yang dapat mencegah terjadinya kehancuran tersebut.
6.3.4. Sambungan las
Proses pengelasan merupakan proses penyambungan dua potong logam dengan pemanasan sampai keadaan plastis atau cair, dengan atau tanpa tekanan. “Pengelasan” dalam bentuk paling sederhana telah dikenal dan digunakan sejak beberapa ribu tahun yang lalu. Para ahli sejarah memperkirakan bahwa orang Mesir kuno mulai menggunakan pengelasan dengan tekanan pada tahun 5500 sebelum masehi (SM), untuk membuat pipa tembaga dengan memalu lembaran yang tepinya saling menutup. Disebutkan bahwa benda seni orang Mesir yang dibuat pada tahun 3000 SM terdiri dari bahan dasar tembaga dan emas hasil peleburan dan pemukulan. Jenis pengelasan ini, yang disebut pengelasan tempa (forge welding), merupakan usaha manusia yang pertama dalam menyambung dua potong logam. Dewasa ini pengelasan tempa secara praktis telah ditinggalkan dan terakhir dilakukan oleh pandai besi. Pengelasan yang kita lihat sekarang ini jauh lebih kompleks dan sudah sangat berkembang.
Asal mula pengelasan tahanan listrik (resistance welding) dimulai sekitar tahun 1877 ketika Profesor Elihu Thompson memulai percobaan pembalikan polaritas pada gulungan transformator. Dia mendapat hak paten pertamanya pada tahun 1885 dan mesin las tumpul tahanan listrik (resistance butt welding) pertama diperagakan di American Institute Fair pada tahun 1887. Pada tahun 1889, Coffin diberi hak paten untuk pengelasan tumpul nyala partikel (flash-butt welding) yang menjadi salah satu proses las tumpul yang penting. Zerner pada tahun 1885 memperkenalkan proses las busur nyala karbon (carbon arc welding) dengan menggunakan dua elektroda karbon.
Pada tahun 1888, N.G. Slavinoff di Rusia merupakan orang pertama yang menggunakan proses busur nyala logam dengan memakai elektroda telanjang (tanpa lapisan). Coffin yang bekerja secara terpisah juga menyelidiki proses busur nyala logam dan mendapat hak Paten Amerika dalam 1892. Pada tahun 1889, A.P. Strohmeyer memperkenalkan konsep elektroda logam yang dilapis untuk menghilangkan banyak masalah yang timbul pada pemakaian elektroda telanjang.
Thomas Fletcher pada tahun 1887 memakai pipa tiup hidrogen dan oksigen yang terbakar, serta menunjukkan bahwa ia dapat memotong atau mencairkan logam. Pada tahun 1901-1903 Fouche dan Picard mengembangkan tangkai las yang dapat digunakan dengan asetilen (gas karbit), sehingga sejak itu dimulailah zaman pengelasan dan pemotongan oksiasetilen (gas karbit oksigen).
Setelah 1919, pemakaian las sebagai teknik konstruksi dan fabrikasi mulai berkembang dengan pertama menggunakan elektroda paduan (alloy) tembaga-wolfram untuk pengelasan titik pada tahun 1920. Pada periode 1930-1950 terjadi banyak peningkatan dalam perkembangan mesin las. Proses pengelasan busur nyala terbenam (submerged) yang busur nyalanya tertutup di bawah bubuk fluks pertama dipakai secara komersial pada tahun 1934 dan dipatenkan pada tahun 1935. Sekarang terdapat lebih dari 50 macarn proses pengelasan yang dapat digunakan untuk menyambung pelbagai logarn dan paduan.
a) Proses dasar
Menurut Welding Handbook, proses pengelasan adalah “proses penyambungan bahan yang menghasilkan peleburan bahan dengan memanasinya hingga suhu yang tepat dengan atau tanpa pemberian tekanan dan dengan atau tanpa pemakaian bahan pengisi.” ; Energi pembangkit panas dapat dibedakan menurut sumbernya: listrik, kimiawi, optis, mekanis, dan bahan semikonduktor. Panas digunakan untuk mencairkan logam dasar dan bahan pengisi agar terjadi aliran bahan (atau terjadi peleburan). Selain itu, panas dipakai untuk menaikkan daktilitas (ductility) sehingga aliran plastis dapat terjadi walaupun jika bahan tidak mencair; lebih jauh lagi, pemanasan membantu penghilangan kotoran pada bahan.
Proses pengelasan yang paling umum, terutama untuk mengelas baja struktural yang memakai energi listrik sebagai sumber panas; dan paling banyak digunakan adalah busur listrik (nyala). Busur nyala adalah pancaran arus listrik yang relatif besar antara elektroda dan bahan dasar
yang dialirkan melalui kolom gas ion hasil pemanasan. Kolom gas ini disebut plasma. Pada pengelasan busur nyala, peleburan terjadi akibat aliran bahan yang melintasi busur dengan tanpa diberi tekanan. Proses lain (yang jarang dipakai untuk struktur baja) menggunakan sumber energi yang lain, dan beberapa proses ini menggunakan tekanan tanpa memandang ada atau tidak adanya pencairan bahan. Pelekatan (bonding) dapat juga terjadi akibat difusi. Dalam proses difusi, partikel seperti atom di sekitar pertemuan saling bercampur dan bahan dasar tidak mencair.
b) Pengelasan Busur Nyala Logam Terlindung (SMAW)
Pengelasan busur nyala logam terlindung (Shielded metal arc welding) merupakan salah satu jenis yang paling sederhana dan paling canggih untuk pengelasan baja struktural. Proses SMAW sering disebut proses elektroda tongkat manual. Pemanasan dilakukan dengan busur listrik (nyala) antara elektroda yang dilapis dan bahan yang akan disambung. Rangkaian pengelasan diperlihatkan pada Gambar 6.13. Elektroda yang dilapis akan habis karena logam pada elektroda dipindahkan ke bahan dasar selama proses pengelasan. Kawat elektroda (kawat las) menjadi bahan pengisi dan lapisannya sebagian dikonversi menjadi gas pelindung, sebagian menjadi terak (slag), dan sebagian lagi diserap oleh logam las. Bahan pelapis elektroda adalah campuran seperti lempung yang terdiri dari pengikat silikat dan bahan bubuk, seperti senyawa flour, karbonat, oksida, paduan logam, dan selulosa. Campuran ini ditekan dari acuan dan dipanasi hingga diperoleh lapisan konsentris kering yang keras.
Pemindahan logam dari elektroda ke bahan yang dilas terjadi karena penarikan molekul dan tarikan permukaan tanpa pemberian tekanan. Perlindungan busur nyala mencegah kontaminasi atmosfir pada cairan logam dalam arus busur dan kolam busur, sehingga tidak terjadi penarikan nitrogen dan oksigen serta pembentukan nitrit dan oksida yang dapat mengakibatkan kegetasan.
Lapisan elektroda berfungsi sebagai berikut:
? Menghasilkan gas pelindung untuk mencegah masuknya udara dan membuat busur stabil.
? Memberikan bahan lain, seperti unsur pengurai oksida, untuk memperhalus struktur butiran pada logam las.
? Menghasilkan lapisan terak di atas kolam yang mencair dan memadatkan las untuk melindunginya dari oksigen dan nitrogen dalam udara, serta juga memperlambat pendinginan.
c) Pengelasan Busur Nyala Terbenam (SAW)
Pada proses SAW (Submerged Arc Welding), busurnya tidak terlihat karena tertutup oleh lapisan bahan granular (berbentuk butiran) yang dapat melebur (lihat Gambar 6.14). Elektroda logam telanjang akan habis karena ditimbun sebagai bahan pengisi. Ujung elektroda terus terlindung oleh cairan fluks yang berada di bawah lapisan fluks granular yang tak terlebur. Fluks, yang merupakan ciri khas dari metode ini, memberikan penutup sehingga pengelasan tidak menimbulkan kotoran, percikan api, atau asap. Fluks granular biasanya terletak secara otomatis sepanjang kampuh (seam) di muka lintasan gerak elektroda. Fluks melindungi kolam las dari atmosfir, berlaku sebagai pembersih logam las, dan mengubah komposisi kimia dari logam las.
Las yang dibuat dengan proses busur nyala terbenam memiliki mutu yang tinggi dan merata, daktilitas yang baik, kekuatan kejut (impact) yang tinggi, kerapatan yang tinggi dan tahan karat yang baik. Sifat mekanis las ini sama baiknya seperti bahan dasar.
d) Pengelasan Busur Nyala Logam Gas (GMAW)
Pada proses GMAW (Gas Metal Arc Welding), elektrodanya adalah kawat menerus dari 1 gulungan yang disalurkan metalui pemegang elektroda (alat yang berbentuk pistol seperti pada Gambar 6.15). Perlindungan dihasilkan seluruhnya dari gas atau campuran gas yang diberikan dari luar. Mula-mula metode ini dipakai hanya dengan perlindungan gas mulia (tidak reaktif) sehingga disebut MIG (Metal Inert Gas/gas logam mulia). Gas yang reaktif biasanya tidak praktis, kecuali C02 (karbon dioksida). Gas C02, baik C02 saja atau dalam campuran dengan gas mulia, banyak digunakan dalam pengelasan baja.
Argon sebenarnya dapat digunakan sebagai gas pelindung untuk pengelasan semua logam, namun, gas ini tidak dianjurkan untuk baja karena mahal serta kenyataan bahwa gas pelindung dan campuran gas lain dapat digunakan. Untuk pengelasan baja karbon dan beberapa baja paduan rendah baik (1) 75% argon dan 25% CO, ataupun (2) 100% ‘C02 lebib dianjurkan [101 . Untuk baja paduan rendah yang keliatannya (toughness) penting, Pustaka [ 10] menyarankan pemakaian campuran dari 60-70% helium, 25-30% argon, dan 4-5% C02
Selain melindungi logam yang meleleh dari atmosfir, gas pelindung mempunyai fungsi sebagai berikut.
? Mengontrol karakteristik busur nyala dan pernindahan logam.
? Mempengaruhi penetrasi, lebar peleburan, dan bentuk daerah las.
? Mempengaruhi kecepatan pengelasan.
? Mengontrol peleburan berlebihan (undercutting).
Pencampuran gas mulia dan gas reaktif membuat busur nyala lebih stabil dan kotoran selama pernindahan logam lebih sedikit. Pemakaian C02 saja untuk pengelasan baja merupakan prosedur termurah karena rendahnya biaya untuk gas pelindung, tingginya kecepatan pengelasan, lebih baiknya penetrasi sambungan, dan baiknya sifat mekanis timbunan las. Satu-satunya kerugian ialah pernakaian C02 menimbulkan kekasaran dan kotoran yang banyak.
e) Pengelasan Busur Nyala Berinti Fluks (FCAW)
Proses FCAW (Flux Cored Arc Welding) sama seperti GMAW tetapi elektroda logam pengisi yang menerus berbentuk tubular (seperti pipa) dan mengandung bahan fluks dalam intinya. Bahan inti ini sama fungsinya seperti lapisan pada SMAW atau fluks granular pada SAW. Untuk kawat yang diberikan secara menerus, lapisan luar tidak akan tetap lekat pada kawat. Gas pelindung dihasilkan oleh inti fluks tetapi biasanya diberi gas pelindung tambahan dengan gas C02.
f) Pengelasan-Terak Listrik (ESW)
Proses ESW (Electroslag Welding) merupakan proses mesin yang digunakan terutama untuk pengelasan dalam posisi vertikal. Ini biasanya dipakai untuk memperoleh las lintasan tunggal (satu kali jalan) seperti untuk  sambungan pada penampang kolom yang besar. Logam las ditimbun ke dalam alur yang dibentuk oleh tepi plat yang terpisah dan ”sepatu” (alas) yang didinginkan dengan air. Terak cair yang konduktif melindungi las serta mencairkan bahan pengisi dan tepi plat. Karena terak padat tidak konduktif, busur nyala diperlukan untuk mengawali proses dengan mencairkan terak dan memanaskan plat. Busur nyala dapat dihentikan setelah proses berjalan dengan baik. Selanjutnya, pengelasan dilakukan oleh panas yang ditimbulkan melalui tahanan terak terhadap aliran arus listrik. Karena pemanasan akibat tahanan digunakan untuk seluruh proses kecuali sumber panas mula-mula, proses SAW sebenarnya bukan merupakan proses pengelasan busur nyala.
g) Pengelasan Stud
Proses yang paling umum digunakan dalam pengelasan stud (baut tanpa ulir) ke bahan dasar disebut pengelasan stud busur nyala (arc stud welding). Proses ini bersifat otomatis tetapi karakteristiknya sama seperti proses SMAW. Stud berlaku sebagai elektroda, dan busur listrik timbul dari ujung stud ke plat. Stud dipegang oleh penembak yang mengontrol waktu selama proses. Perlindungan dilakukan dengan meletakkan cincin keramik di sekeliling ujung stud pada penembak. Penembak diletakkan dalam posisinva dan busur ditimbulkan pada saat cincin keramik berisi logam cair. Setelah beberapa saat, penembak mendorong stud ke kolam yang mencair dan akhirnya terbentuk las sudut (fillet weld) keeil di sekeliling stud. Penetrasi sempurna di seluruh penampang lintang stud diperoleh dan pengelasan biasanya selesai dalam waktu kurang dari satu detik.
6.3.5. Kemampuan dilas dari baja struktural
Kebanyakan baja konstruksi dalam spesifikasi ASTM dapat dilas tanpa prosedur khusus atau perlakuan khusus. Kemampuan dapat dilas (weldability) dari baja adalah ukuran kemudahan menghasilkan sambungan struktural yang teguh tanpa retak. Beberapa baja struktural lebih sesuai dilas dari pada yang lain. Prosedur pengelasan sebaiknya didasarkan pada  kimiawi baja bukan pada kandungan paduan maksimum yang ditetapkan, karena kebanyakan hasil pabrik berada di bawah batas paduan maksimum yang ditentukan oleh spesifikasinya.
6.3.6. Jenis sambungan las
Jenis sambungan tergantung pada faktor-faktor seperti ukuran dan profil batang yang bertemu di sambungan, jenis pembebanan, besarnya luas sambungan yang tersedia untuk pengelasan, dan biaya relatif dari berbagai jenis las. Sambungan las terdiri dari lima jenis dasar dengan berbagai macam variasi dan kombinasi yang banyak jumlahnya. Kelima jenis dasar ini adalah sambungan sebidang (butt), lewatan (lap), tegak (T), sudut, dan sisi, seperti yang diperlihatkan pada Gambar 6.16.
???? Sambungan Sebidang
Sambungan sebidang dipakai terutama untuk menyambung ujungujung plat datar dengan ketebalan yang sama atau hampir sarna. Keuntungan utama jenis sambungan ini ialah menghilangkan eksentrisitas yang timbul pada sambungan lewatan tunggal seperti dalam Gambar 6.16(b). Bila digunakan bersama dengan las tumpul penetrasi sempurna (full penetration groove weld), sambungan sebidang menghasilkan ukuran sambungan minimum dan biasanya lebih estetis dari pada sambungan bersusun. Kerugian utamanya ialah ujung yang akan disambung biasanya harus disiapkan secara khusus (diratakan atau dimiringkan) dan dipertemukan secara hati-hati sebelum dilas. Hanya sedikit penyesuaian dapat dilakukan, dan potongan yang akan disambung harus diperinci dan dibuat secara teliti. Akibatnya, kebanyakan sambungan sebidang dibuat di bengkel yang dapat mengontrol proses pengelasan dengan akurat.
???? Sambungan Lewatan
Sambungan lewatan pada Gambar 6.17 merupakan jenis yang paling umum. Sambungan ini mempunyai dua keuntungan utama:
? Mudah disesuaikan.
Potongan yang akan disambung tidak memerlukan ketepatan dalam pembuatannya bila dibanding dengan jenis sambungan lain. Potongan tersebut dapat digeser untuk mengakomodasi kesalahan kecil dalam pembuatan atau untuk penyesuaian panjang.
? Mudah disambung.
Tepi potongan yang akan disambung tidak memerlukan persiapan khusus dan biasanya dipotong dengan nyala (api) atau geseran. Sambungan lewatan menggunakan las sudut sehingga sesuai baik untuk pengelasan di bengkel maupun di lapangan. Potongan yang akan disambung dalam banyak hal hanya dijepit (diklem) tanpa menggunakan alat pemegang khusus. Kadang-kadang potonganpotongan diletakkan ke posisinya dengan beberapa baut pemasangan yang dapat ditinggalkan atau dibuka kembali setelah dilas.
? Keuntungan lain sambungan lewatan adalah mudah digunakan untuk menyambung plat yang tebalnya berlainan.
???? Sambungan Tegak
Jenis sambungan ini dipakai untuk membuat penampang bentukan (built-up) seperti profil T, profil 1, gelagar plat (plat girder), pengaku tumpuan atau penguat samping (bearing stiffener), penggantung, konsol (bracket). Umumnya potongan yang disambung membentuk sudut tegak
lurus seperti pada Gambar 6.16(c). Jenis sambungan ini terutama bermanfaat dalam pembuatan penampang yang dibentuk dari plat datar yang disambung dengan las sudut maupun las tumpul.
???? Sambungan Sudut
Sambungan sudut dipakai terutama untuk membuat penampang berbentuk boks segi empat seperti yang digunakan untuk kolom dan balok yang memikul momen puntir yang besar.
???? Sambungan Sisi
Sambungan sisi umumnya tidak struktural tetapi paling sering dipakai untuk menjaga agar dua atau lebih plat tetap pada bidang tertentu atau untuk mempertahankan kesejajaran (alignment) awal. Seperti yang dapat disimpulkan dari pembahasan di muka, variasi  dan kombinasi kelima jenis sambungan las dasar sebenarriya sangat banyak. Karena biasanya terdapat lebih dari satu cara untuk menyambung sebuah batang struktural dengan lainnya, perencana harus dapat memilih sambungan (atau kombinasi sambungan) terbaik dalam setiap persoalan.
6.3.7. Jenis las
Jenis las yang umum adalah las tumpul, sudut, baji (slot), dan pasak (plug) seperti yang diperlihatkan pada Gambar 6.18. Setiap jenis las memiliki keuntungan tersendiri yang menentukan jangkauan penia-kaiannya. Secara kasar, persentase pemakaian keempat jenis tersebut untuk konstruksi las adalah sebagai berikut: las tumpul, 15%; las sudut, 80%; dan sisanya 5% terdiri dari las baji, las pasak dan las khusus lainnya.
???? Las Tumpul
Las tumpul (groove weld) terutama dipakai untuk menyambung batang struktural yang bertemu dalam satu bidang. Karena las tumpul biasanya ditujukan untuk menyalurkan semua beban batang yang disambungnya, las ini harus memiliki kekuatan yang sama seperti potongan yang disambungnya. Las tumpul seperti ini disebut las tumpul penetrasi sempurna. Bila sambungan direncanakan sedemikian rupa hingga las tumpul tidak diberikan sepanjang ketebalan potongan yang disambung, maka las ini disebut las tumpul penetrasi parsial.
Banyak variasi las tumpul dapat dibuat dan masing-masing dibedakan menurut bentuknya. Las tumpul umumnya memerlukan penyiapan tepi tertentu dan disebut menurut jenis penyiapan yang dilakukan. Gambar 6.19 memperlihatkan jenis las tumpul yang umum dan menunjukan penyiapan alur yang diperlukan. Pemilihan las tumpul yang sesuai tergantung pada proses pengelasan yang digunakan, biaya penyiapan tepi, dan biaya pembuatan las. Las tumpul juga dapat dipakai pada sambungan tegak.
???? Las Sudut
Las sudut bersifat ekonomis secara keseluruhan, mudah dibuat, dan mampu beradaptasi, serta merupakan jenis las yang paling banyak dipakai dibandingkan jenis las dasar yang lain. Beberapa pemakaian las sudut diperlihatkan pada Gambar 6.20. Las ini umumnya memerlukan lebih sedikit presisi dalam pemasangan karena potongannya saling bertumpang (overlap), sedang las tumpul memerlukan kesejajaran yang tepat dan alur tertentu antara potongan. Las sudut terutama menguntungkan untuk pengelasan di lapangan, dan untuk menyesuaikan kembali batang atau sambungan yang difabrikasi dengan toleransi tertentu tetapi tidak cocok dengan yang dikehendaki. Selain itu, tepi potongan yang disambung jarang memerlukan penyiapan khusus, seperti pemiringan (beveling). atau penegakan, karena kondisi tepi dari proses pemotongan nyala (flame cutting) atau pemotongan geser umumnya memadai.
???? Las Baji dan Pasak
Las baji dan pasak dapat dipakai secara tersendiri pada sambungan seperti yang diperlihatkan dalam Gambar 6.21(c) dan (d), atau dipakai bersama-sama dengan las sudut seperti yang ditunjukkan dalam Gambar 9.34. Manfaat utama las baji dan pasak ialah menyalurkan gaya geser pada sambungan lewatan bila ukuran sambungan membatasi panjang yang tersedia untuk  as sudut atau las sisi lainnya. Las baji dan pasak juga berguna untuk mencegah terjadinya tekuk pada bagian yang saling bertumpang.
6.3.8. Faktor yang mempengaruhi mutu sambungan las
Untuk memperoleh sambungan las yang memuaskan, gabungan dari banyak keahlian individu diperlukan, mulai dari perencanaan las sampai operasi pengelasan. Faktor-faktof yang mempengaruhi kualitas sambungan las
???? Elektroda yang sesuai, alat las, dan prosedur
Ukuran elektroda dipilih berdasarkan ukuran las yang akan dibuat dan arus listrik yang dihasilkan oleh alat las. Karena umumnya mesin las mempunyai pengatur untuk memperkecil arus listrik, elektroda yang lebih kecil dari kemampuan maksimum mudah diakomodasi dan  sebaiknya digunakan. Oleh karena penimbunan logam las pada pengelasan busur nyala terjadi akibat medan elektromagnetis dan bukan akibat gravitasi, pengelasan tidak harus dilakukan pada posisi tidur atau horisontal. Empat posisi pengelasan utama diperlihatkan pada Gambar
6.22. Sebaiknya dihindari (bila mungkin) posisi menghadap ke atas karena merupakan posisi yang paling sulit. Sambungan yang dilas di bengkel biasanya diletakkan pada posisi tidur atau horisontal, tetapi las lapangan dapat sembarang posisi pengelasan yang tergantung pada orientasi sambungan. Posisi pengelasan untuk las lapangan sebaiknya diperhatikan dengan teliti oleh perencana.
???? Persiapan tepi yang sesuai
Persiapan tepi yang umum, untuk las tumpul diperlihatkan pada Gambar 6.23. Lebar celah (root opening) R adalah jarak pisah antara potongan yang akan disambung dan dibuat agar elektroda dapat menembus dasar sarnbungan. Semakin kecil lebar celah, semakin besarlah sudut lereng yang harus dibuat. Tepi runcing pada Gambar 6.23(a) akan mengalami pembakaran menerus (burn-through) jika tidak diberikan plat pelindung (backup plate) seperti pada Gambar 6.23(b).
Plat pelindung umumnya digunakan bila pengelasan, dilakukan hanya dari satu sisi. Masalah pembakaran menerus dapat dibatasi jika lerengnya diberi bagian tegak seperti pada Gambar 6.23(c). Pembuat las sebaiknya tidak memberikan plat pelindung bila sudah ada bagian tegak, karena kemungkinan besar kantung gas akan terbentuk sehingga merintangi las penetrasi sempurna. Kadang-kadang pemisah seperti yang diperlihatkan pada Gambar 6.23(d) diberikan untuk mencegah pembakaran menerus, tetapi pemisah ini dicabut kembali sebelum sisi kedua dilas.
???? Pengontrolan
Faktor lain yang mempengaruhi kualitas las adalah penyusutan. Jika las titik diberikan secara menerus pada suatu plat, maka plat akan mengalami distorsi (perubahan geometri). Distorsi ini akan terjadi jika tidak berhati-hati baik dalam perencanaan sambungan maupun prosedur pengelasan. Berikut ini adalah ringkasan cara untuk memperkecil distorsi
? Perkecil gaya susut dengan:
o Menggunakan logam las minimum; untuk las tumpul, lebar celah jangan lebih besar dari yang diperlukan, jangan mengelas berlebihan
o Sedapat mungkin mempersedikit jumlah lintasan
o Melakukan persiapan tepi dan penyesuaian yang tepat
o Menggunakan las terputus-putus, minimal untuk sambungan prakonstruksi
o Menggunakan langkah mundur (backstepping), yaitu menimbun las pada las sebelumnya yang telah selesai, atau menimbun dalam arah berlawanan dengan arah pengelasan sambungan.
? Biarkan penyusutan terjadi dengan:
o Mengungkit plat sehingga setelah penyusutan terjadi plat akan berada pada posisi yang tepat.
o Menggunakan potongan yang diberi lenturan awal.
? Seimbangkan gaya susut dengan:
o Melakukan pengelasan simetris; las sudut pada setiap sisi potongan menghasilkan pengaruh yang saling menghilangkan
o Menggunakan segmen las tersebar
o Pemukulan, yaitu meregangkan logam dengan sejumlah pukulan
o Menggunakan klem, alat pemegang dan lain-lain; alat ini membuat logam las meregang ketika mendingin.
6.3.9. Cacat yang mungkin terjadi pada las
Teknik dan prosedur pengelasan yang tidak baik menimbulkan cacat pada las yang menyebabkan diskontinuitas dalam las. Cacat yang umumnya dijumpai ialah (Gambar 6.24.):
? Peleburan Tak Sempurna
Peleburan tak sempurna terjadi karena logam dasar dan logam las yang berdekatan tidak melebur bersama secara menyeluruh. Ini dapat terjadi jika permukaan yang akan disambung tidak dibersihkan dengan baik dan dilapisi kotoran, terak, oksida, atau bahan lainnya. Penyebab lain dari cacat ini ialah pemakaian peralatan las yang arus listriknya tidak memadai, sehingga logam dasar tidak mencapai titik lebur. Laju pengelasan yang terlalu cepat juga dapat menimbulkan pengaruh yang sama.
? Penetrasi Kampuh yang Tak Memadai
Penetrasi kampuh yang tak memadai ialah keadaan di mana kedalaman las kurang dari tinggi alur yang ditetapkan. Keadaan ini diperlihatkan pada sambungan dalam Gambar 9.37 yang seharusnya merupakan penetrasi sempurna. Penetrasi kampuh parsial hanya dapat diterima bila memang ditetapkan demikian.
Cacat ini, yang terutama berkaitan dengan las tumpul, terjadi akibat perencanaan alur yang tak sesuai dengan proses pengelasan yang dipilih, elektroda yang terlalu besar, arus listrik yang tak memadai, atau laju pengelasan yang terlalu cepat.
? Porositas
Porositas terjadi bila rongga-rongga atau kantung-kantung gas yang kecil terperangkap selama proses pendinginan. Cacat ini ditimbulkan oleh arus listrik yang terlalu tinggi atau busur nyala yang terlalu panjang. Porositas dapat terjadi secara merata tersebar dalam las, atau dapat merupakan rongga yang besar terpusat di dasar las sudut atau dasar dekat plat pelindung pada las tumpul. Yang terakhir diakibatkan oleh prosedur pengelasan yang buruk dan pemakaian plat pelindung yang ceroboh.
? Peleburan Berlebihan
Peleburan berlebihan (uncercutting) ialah terjadinya alur pada bahan dasar di dekat ujung kaki las yang tidak terisi oleh logam las. Arus listrik dan panjang busur nyala yang berlebihan dapat membakar atau menimbulkan alur pada logam dasar. Cacat ini mudah terlihat dan dapat diperbaiki dengan memberi las tambahan.
? Kemasukan Terak
Terak terbentuk selama proses pengelasan akibat reaksi kimia lapisan elektroda yang mencair, serta terdiri dari oksida logam dan senyawa lain. Karena kerapatan terak kecil dari logam las yang mencair, terak biasanya berada pada permukaan dan dapat dihilangkan dengan mudah setelah dingin. Namun, pendinginan sambungan yang terlalu cepat dapat menjerat terak sebelum naik ke permukaan. Las menghadap ke atas seperti yang diperlihatkan pada Gambar 6.22(d) sering mengalami kemasukan terak dan harus diperiksa dengan teliti. Bila beberapa  lintasan las dibutuhkan untuk memperoleh ukuran las yang dikehendaki, pembuat las harus membersihkan terak yang ada sebelum memulai pengelasan yang baru. Kelalaian terhadap hal ini merupakan penyebab utama masuknya terak.
? Retak
Retak adalah pecah-pecah pada logam las, baik searah ataupun transversal terhadap garis las, yang ditimbulkan oleh tegangan internal. Retak pada logam las dapat mencapai logam dasar, atau retak terjadi seluruhnya pada logam dasar di sekitar las. Retak  mungkin merupakan cacat las yang paling berbahaya, namun, retak halus yang disebut retak mikro (mikrofissures) umumnya tidak mempunyai pengaruh yang berbahaya. Retak kadang-kadang terbentuk ketika las mulai memadat dan umumnya diakibatkan oleh unsur-unsur yang getas (baik besi ataupun elemen paduan) yang terbentuk sepanjang serat perbatasan. Pemanasan yang lebih merata dan pendinginan yang lebih lambat akan mencegah pembentukan retak “panas”. Retak pada bahan dasar yang sejajar las juga dapat terbentuk pada suhu kamar. Retak ini terjadi pada baja paduan rendah akibat pengaruh gabungan dari hidrogen, mikrostruktur martensit yang getas, serta pengekangan terhadap susut dan distorsi. Pemakaian elektroda rendah-hidrogen bersama dengan pemanasan awal dan akhir yang sesuai akan memperkecil retak “dingin” ini.
Sumber :
Ariestadi, Dian, 2008, Teknik Struktur Bangunan Jilid 2 untuk SMK, Jakarta : Pusat Perbukuan Departemen Pendidikan Nasional, h. 274 – 301.

Tidak ada komentar:

Poskan Komentar